
HINT: The work required to solve this question can be greatly reduced if you choose the function to be optimized wisely.

MAXIMIZE
$$A = \frac{1}{2} \times y$$
 $X^{2} + 4^{2} = 10^{2}$ $X = \sqrt{8^{2}4} = 2\sqrt{21}$
 $Y = \sqrt{100 - x^{2}}$ $X = \sqrt{8^{2}4} = 2\sqrt{21}$
 $X = \sqrt{2} \times \sqrt{100 - x^{2}}$ $X = \sqrt{4} \times \sqrt{2\sqrt{100 - x^{2}}}$ $X = \sqrt{2} \times \sqrt{100 - x^{2}}$ $X = \sqrt{2} \times \sqrt{2}$

You ı	use Newton's Method to find the solution of the equation $x = 10 \sin x$ with initial approximation $x_0 = 5$. SCORE:/6 PTS
[a]	What is the expression for the second approximation x_1 in terms of x_0 ? $x - 10510 = 0$
	Do NOT use f or f' notation.
	$\times_{o}-10\sin \times_{o}$
	$X_1 = X_0 - \frac{X_0 - 10Sin X_0}{1 - 10\cos X_0}$
[b]	Write down the decimal values of the second, third and fourth approximations (ie. x_1, x_2, x_3) that Newton's Method generates.
[]	Do NOT round off your answers.
	$x_1 = \frac{12.94352017}{12.94352017} x_2 = \frac{14.05965841}{12.94352017} x_3 = \frac{-4.061088149}{12.94352017}$ What is the solution that Newton's Method generates 2
[c]	What is the solution that Newton's Method generates?
[0]	What is the solution that Newton's Method generates :
	x = -2.852341894
You u	use Newton's Method to approximate $\sqrt[5]{100}$ with initial approximation $x_0 = 2$. SCORE:/4 PTS
[a]	What is the expression for the second approximation x_1 in terms of x_0 ? $\times 5 - 100 = 0$
	Do NOT use f or f' notation.
	$X_{1} = X_{0} - \frac{X_{0}^{5} - 100}{5 \times 4}$
	5×4 (2)
[b]	Write down the decimal values of the second and third approximations (ie. x_1, x_2) that Newton's Method generates.
	Do NOT round off your answers.
	285 D 2582VITIO2 (
	$x_1 = 2.85$ $x_2 = 2.583145102$
	wish to use Newton's Method on the graph of f below to find the solution of the equation $f(x) = 0$ with SCORE:/4 PTS
initial	approximation x_0 shown. Graphically find the approximations x_1 and x_2 (label them clearly).
	O TAIGATE
	D+O TANGENTS D+O X,, X2
	$(\Omega + (\Omega) \times \times$
	X1 X1
	$X_0 \times_2$